

Transboundary monitoring strategy and monitoring points

Jekaterina Demidko

Latvian Environment, Geology and Meteorology Centre

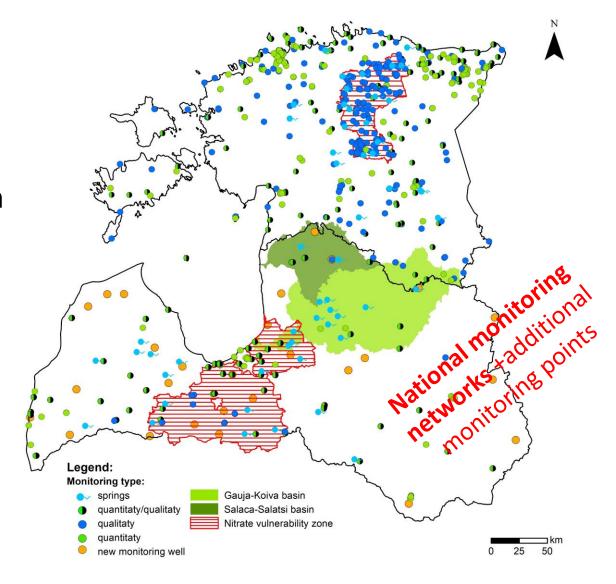
Project WaterAct virtual seminar for experts

April 7, 2022

WaterAct

Joint actions for more efficient management of common groundwater resources

Groundwater monitoring principles in Latvia and Estonia (1)


Legislation defining the monitoring network:

- ✓ Water Framework Directive 2000/60/EK Article 8, Paragraph 1;
- ✓ Groundwater directive 2006/118/EK;
- ✓ Nitrate directive 91/676/EK Article 5, Paragraph 6;
- ✓ Laws and regulations of each country;
- ✓ Guidance documents N°.15, N°.16, N°.26

Groundwater monitoring principles in Latvia and Estonia (2)

Groundwater observation purposes:

- ✓ assessment of quantitative and qualitative status;
- ✓ assessment of pressures and growth trends of pollutants;
- ✓ development of River Basin Management Plans;
- ✓ provides input for the development and evaluation of the effectiveness of groundwater protection measures.

Groundwater monitoring principles in Latvia and Estonia (3)

- ✓ every 6 years, long-term GW monitoring programs are developed in both countries;
- ✓ each year annual monitoring plans are prepared;
- ✓ new long-term GW monitoring programme developed in Estonia for 2022-2027, in Latvia for 2021-2026.

Data analyses focused on new long-term program!

Principles of groundwater quality monitoring

Sampling:

✓ GW samples are taken, transferred and analyzed in accordance with national methods, which are standardized. *GW sampling according to*: EVS EN ISO 5667-1, EVS EN ISO 5667-14.

✓ GW sampling are provided by well-trained specialists.

Principles of groundwater quality monitoring (1)

Sampling:

✓ After stabilization of the field parameters (pH, temperature, dissolved oxygen concentration and electrical conductivity), a water sample is taken, placed in a closed cold box and delivered to the laboratory;

Principles of groundwater quality monitoring (3)

Analysis:

- performed in accredited laboratories (NE ISO/IEC 17025)
- ✓ laboratory names (national accreditation number): Estonian Environmental Research Centre (L008) and Latvian Environment, Geology and Meteorology Center (LATAK-T-105-34-97)

Principles of groundwater quality monitoring (4)

Analysis:

- analyzed basic and additional parameters;
- minimal list of basic parameters (EC recommendations) Na⁺, K⁺, Ca²⁺, Mg²⁺, Cl⁻, SO₄²⁻, HCO₃⁻, NH₄⁺, NO₂⁻, NO₃⁻, total organic carbon (TOC), P_{tot} or PO₄³⁻ and fieldwork parameters;
- ✓ Groundwater Directive Annex II determines the minimal specific indicators list –
 As, Cd, Pb, Hg, chemical pollutants (trichlorethylene, tetrachloroethylene);
- ✓ Groundwater Directive Annex I requires monitoring of **individual pesticides** and the **amount of total pesticides**.

Principles of groundwater quality monitoring (5)

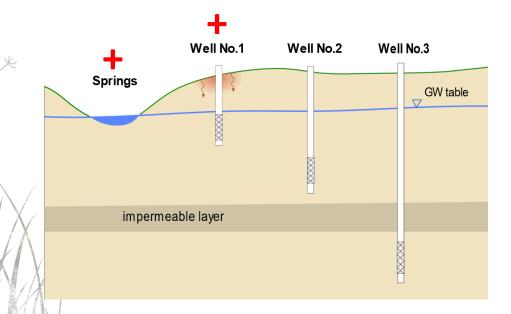
of groundwater and Estonia Observed

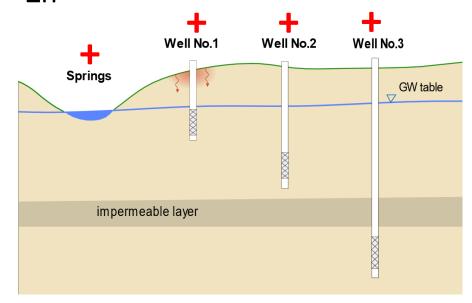
Parameters	Latvia	Estonia
Major ions	Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺ , Cl ⁻ , SO ₄ ²⁻ , HCO ₃ ⁻ , total hardness (calculated), PO ₄ ³⁻ , P _{tot} , Fe _{tot} *, Mn	Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺ , Cl ⁻ , SO ₄ ²⁻ , HCO ₃ ⁻ , total hardness, PO ₄ ³⁻ , P _{tot} *, Fe _{tot} , Dry residue
Nitrogen compounds and their ionic forms	NH ₄ ⁺ , NO ₂ ⁻ , NO ₃ ⁻ , N _{tot} , TOC , DOC , UV absorption, permanganate index	NH ₄ ⁺ , NO ₂ ⁻ , NO ₃ ⁻ , N _{tot} *, PHT, CO2 (calculated)
Heavy metals	Cd, Pb, Hg, As, Ni	Cd, Pb, Hg, As, Ba, Zn*, Cu*, Ni*
Chemical pollutants	Trichlorethylene, tetrachloroethylene, 1,2-dichloroethane, trichloromethane, BTEX + other parameters (more information in Annex I)	Trichlorethylene, tetrachloroethylene, 1,2-dichloroethane + <u>other parameters</u> (more information in Annex I)
Pesticides	Atrazine, simazine, bentazone, MCPA, promethrin, propazine, 2,4-D, isoproturon, aclonifen, bifenox, aldrin, dieldrin, heptachlor, dimethoate, cypermethrin, trifluralin, tebuconazole*, epoxiconazole*, diflufenican*, metribazuzan*, metribazuran*, MCPB, heptachlor epoxy, alpha-cypermethrin, pendimethalin*, azoxystrobin*, prochloraz*	Atrazine, simazine, bentazone, MCPA, promethrin, propazine, 2,4-D, isoproturon, aclonifen, bifenox, aldrin, dieldrin, heptachlor, dimethoate, cypermethrin, trifluralin, tebuconazole, epoxiconazole, diflufenican, metribuzin, metazachlor + other parameters (more information in Annex I)

Notes: Basic parameters, Additional parameters, Mn – a parameter measured in only one country.

^{*} Components are included in the new monitoring program.

Principles of groundwater quality monitoring (6)


There are different principles for monitoring additional parameters!



- ✓ only at points with the lowest protection
- ✓ determined according to the pressures

- ✓ at all points, regardless of pressures
- ✓ exceptions are N_{tot}, P_{tot}, PO₄, Ba, Ni, Cu,
 Zn

Principles of groundwater quality monitoring (7)

- ✓ methods mostly comparable
- ✓ Exemptions are pesticides and chemical pollutants

Parameter	Latvian method	Estonian method
Atrazine	EN ISO 10695:2000*	STJnrU63
Simazine	EN ISO 10695:2000*	STJnrU92
Propazine	EN ISO 10695:2000*	STJnrU63
Bentazone	US EPA Method 8151A:1996*	STJnrU92
MCPA	US EPA Method 8151A:1996*	STJnrU92
Aldrin	ISO 6468:1996	STJnrU63
Dieldrin	ISO 6468:1996	STJnrU63
Heptachlor	ISO 6468:1996	STJnrU63
2,4-D	BIOR-T-012-162-2015	STJnrU92
Isoproturon	BIOR-T-012-162-2015	STJnrU92
Aclonifen	BIOR-T-012-162-2015	STJnrU63
Biphenox	BIOR-T-012-162-2015	STJnrU63
Promethrin	BIOR-T-012-162-2015	STJnrU63
Dimethoate	BIOR-T-012-162-2015	STJnrU92
Cypermethrin	BIOR-T-012-162-2015	STJnrU63
Trifluralin	BIOR-T-012-162-2015	STJnrU63
Tebuconazole	BIOR-T-012-162-2015	STJnrU92
Epoxiconazole	BIOR-T-012-162-2015	STJnrU63
Diflufenican	BIOR-T-012-162-2015	STJnrU92
Metribuzin	BIOR-T-012-162-2015	STJnrU63
Metazachlor	BIOR-T-012-162-2015	STJnrU92
Trichlorethylene	ISO 10301:1997	ISO 20595
Tetrachlorethylene	ISO 10301:1997	ISO 20595
1,2-dichloroethane	ISO 10301:1997	ISO 20595

-		
Parameter	Latvian method	Estonian method
	LVS EN ISO 11885:2009	EVS-EN ISO 11885
Calcium (Ca)	LVS EN ISO 7980:2000	ISO 6058
Calcium (Ca)	-	SFS 3003
	-	EN ISO 14911
	LVS EN ISO 11885:2009	EVS-EN ISO 11885
Magnesium (Mg)	LVS EN ISO 7980:2000	ISO 6059
	-	EN ISO 14911
Sodium (Na)	LVS ISO 9964-3:1993	EVS-ISO 9964-3
Souldin (Na)	LVS EN ISO 11885:2009	EN ISO 14911
Botacium (K)	LVS ISO 9964-3:1993	EVS-ISO 9964-3
Potassium (K)	LVS EN ISO 11885:2009	EN ISO 14911
Bicarbonates (HCO3)	SM 2320 B:2017	EVS-EN ISO 9963-1
Sulphates (SO4)	LVS EN ISO 10304-1:2009	EVS-EN ISO 10304-1
Chlorides (Cl)	LVS EN ISO 10304-1:2009	EVS-EN ISO 10304-1
osphate phosphorus andphosphates (PC	LVS EN ISO 6878:2005, 4.nod	EVS-EN ISO 6878
ospnate priospriorus andpriospriates (PC	-	ISO 15681-2
Total phosphorus (Ptot)	LVS EN ISO 6878:2005, 7.nod.	ISO 15681-2
Total nitrogen (Ntot)	LVS EN ISO 11905-1:1998	ISO 11905
lotal introgen (Ntot)	LVS EN 12260:2004	-
Ammonium (NH4)	LVS EN ISO 11732:2005	EVS-EN ISO 11732
Ammonium (1414)	QuAAtro Method no. Q-080-06 Rev.2	SFS 3032
Nitrites (NO2)	LVS ISO 6777:1984	EVS-EN ISO 13395
Nitrates (NO3)	LVS EN ISO 13395:2004	EVS-EN ISO 13395
Mitates (NO3)	-	EVS-EN ISO 10304-1
	SM 2340 C:2017	SM 2340 C:2017
Total hardness	-	ISO 6059
	-	SFS 3003
Total iron (Fetot)	LVS EN ISO 11885:2009	ISO 6332
Lead (Pb)	LVS EN ISO 11885:2009	EVS-EN ISO 11885
Lead (FD)	-	EVS-EN ISO 17294-2
Nickel (Ni)	LVS EN ISO 11885:2009	EVS-EN ISO 11885
Wicker (W)	-	EVS-EN ISO 17294-2
Cadmium (Cd)	LVS EN ISO 15586:2003	EVS-EN ISO 17294-2
Caumum (Cu)	LVS EN ISO 11885:2009	EVS-EN ISO 11885
Mercury (Hg)	LVS EN ISO 17852:2008	EVS-EN ISO 17852
mercury (118)	-	EVS-EN ISO 12846
Arsenic (As)	LVS EN ISO 15586:2003	EVS-EN ISO 17294-2
Olstine (Os)	-	EVS-EN ISO 11885

Principles of groundwater quality monitoring (8)

Frequency of groundwater quality monitoring at monitoring points:

Country	Parameter	Survey frequency (from-to)	Sampling frequency (from-to)	Sampling points
Latvia	Basic	Once a year - once every 6 years	Once a year – 4 times a year	all points
Latvia	Additional	Once a year – 2 times in 6 years	Once a year – 4 times a year	only at points with the lowest protection or GWBs at risk
	Basic	Once a year – 3 times in 6 years	Once a year – 4 times a year (for nitrates in nitrate vulnerable stations)	all points
Estonia	Additional	Once a year – 1 time in 6 years	Once a year	all points, except in GWBs 1, 2, 3, 4 where samples are taken from half of the monitoring stations

Additional parameters – in Latvia indicated only in monitoring points with lower protection, in Estonia indicated in all monitoring points (exemptions - Ntot, Ptot, PO4, Ba, Ni, Cu, Zn)!

Principles of groundwater quantity monitoring

GW quantity indicator:

✓ water level

Frequency of GW quantity observations at monitoring points:

Type/frequency o	Type/frequency of measurements		Estonia
	Once a year	-	-
Manual	4 times a year	7	-
measurements	Once a month	70	105
	Twice a month	35	-
Automatic	Twice a day	201	-
measurements	8 times a day	-	151
Total:		313	256

Summary about GW monitoring principles

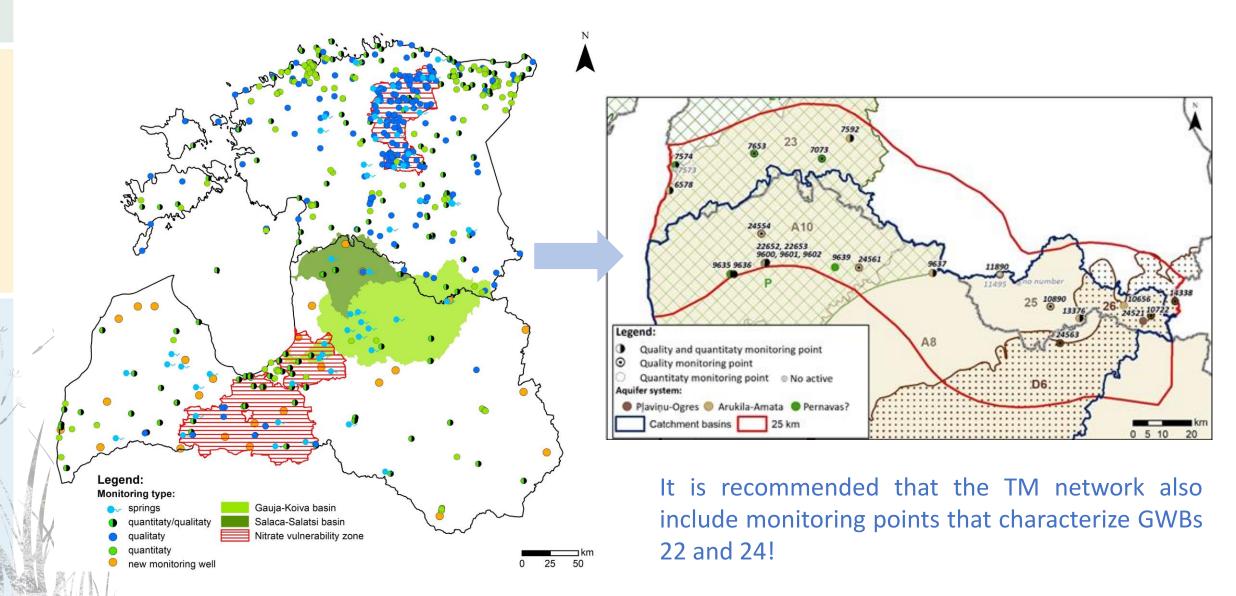
Although there is a little different list of chemical parameters and monitoring frequency between countries, Estonia and Latvia carry out GW monitoring on a relatively similar basis following the WFD guidelines. This is a good foundation for harmonized TB monitoring network.

Transboundary monitoring network (1)

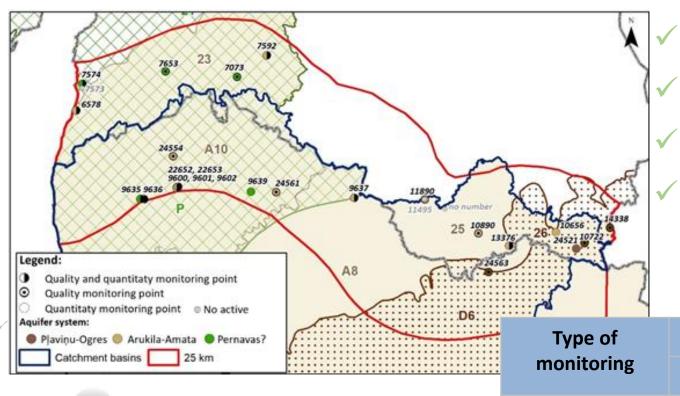
- ✓ Why we need transboundary monitoring?
- ✓ What is the aim of GW monitoring?
- ✓ What is that we want to learn or accomplish?

Transboundary monitoring network (2)

Why?


- ✓ shared groundwater resources
- ✓ identified 8 TGWBs (D26, A8, A10, P, 21, 23, 25, 26)

What?


- ✓ determine the chemical and qualitative status of TGWBs at regional level;
 - improve cooperation between countries

Transboundary monitoring network (3)

Transboundary monitoring network (3)

79% quality monitoring,

58% quantitative monitoring,

GWB

low density,

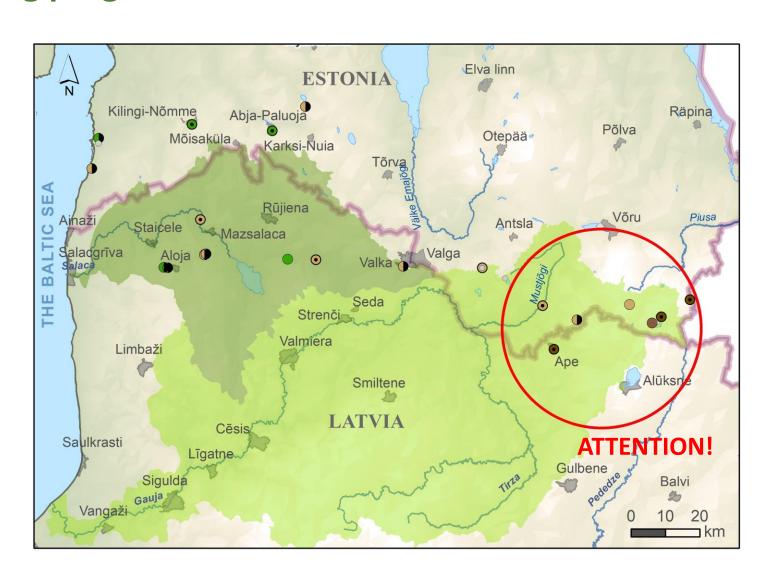
recommended to focus on the development and harmonization of GW quality monitoring program.

Total

number

19

14


27

3

monitoring	26	D6	23	25	A8	A10	21	
Quality	2	1	2	3	1	5	2	
Quantity	1	0	2	2	1	5	1	
Inactive	-	-	1	2	-	-	-	
Total number	3	1	3*	6	1	7	3	
	Quantity Inactive	Quality 2 Quantity 1 Inactive -	Quality 2 1 Quantity 1 0 Inactive	Quality 2 1 2 Quantity 1 0 2 Inactive - - 1	Quality 2 1 2 3 Quantity 1 0 2 2 Inactive - - 1 2	Quality 2 1 2 3 1 Quantity 1 0 2 2 1 Inactive - - 1 2 -	Quality 2 1 2 3 1 5 Quantity 1 0 2 2 1 5 Inactive - - 1 2 - -	Quality 2 1 2 3 1 5 2 Quantity 1 0 2 2 1 5 1 Inactive - - 1 2 - - -

Long-term quality monitoring program

- need of data exchange,
- identified the initial list of transboundary monitoring points,
- ✓ increased attention should be paid for Gauja-Koiva river basin district

Long-term quality monitoring program (2)

	Frequency	
	Basic (universal) parameters	
Descriptive determinants (field parameters)	Temperature, pH, Electrical conductivity, dissolved oxygen (O2)	3 times in 6 years (springs and wells which represent GWB 23,
Major ions and nitrogen compounds	Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺ , Cl ⁻ , SO ^{4²⁻} , HCO ³⁻ , total hardness, Fetot, NH ⁴⁺ , NO ²⁻ , NO ³	25, 26, A8, A10 and D6); 2 times in 6 years (wells which represent GWB 21, P)
	Additional parameters	
Metals	Cd, Pb, Hg, As	1 time in 6 years (in the all monitoring points)
Chemical pollutants	Trichlorethylene, Tetrachlorethylene, 1,2-dichloroethane	1 time in 6 years (only in the
Pesticides	Atrazine, Simazine, Propazine, Bentazone, MCPA, Aldrin, Dieldrin, Heptachlor, 2,4-D, Isoproturon, Aclonifen, Biphenox, Promethrin, Dimethoate, Cypermethrin, Trifluralin, Tebuconazole, Epoxiconazole, Diflufenican, Metribuzin, Metazachlor	1 time in 6 years (only in the monitoring points, which parameters analyzed)

Long-term quality monitoring program (3)

- ✓ agreement needed between LEGMC and EEA (in process)
- ✓ forwarding monitoring results in April-May each year?

Thank you!

Contact me:

jekaterina.demidko@lvgmc.lv

bit.ly/WaterAct-project

bit.ly/WaterAct-Researchgate

REPUBLIC OF ESTONIA

MINISTRY OF THE ENVIRONMENT

REPUBLIC OF ESTONIA ENVIRONMENT AGENCY

WaterAct

Joint actions for more efficient management of common groundwater resources