Strategies of conceptual model development

Andres Marandi

Geological Survey of Estonia

WaterAct

Joint actions for more efficient management

of common groundwater resources

The Risk Based Management of WFD

• Risk Assessment

Not the classical approach – risk to human health, etc

In WFD:

Risk not to achieve the environmental objectives of the WFD

Groundwater objectives in WFD

- 1. Prevent or limit the input of pollutants;
- 2. Prevent the deterioration of status of groundwater bodies;
- 3. Achieve good groundwater status (both chemical and quantitative);
- 4. Implement measures to reverse any significant and sustained upward trend;
- 5. Meet the requirements of protected areas.

How to assess risk?

- 1. Scale is diferent;
- 2. Objectives are different;
- 3. Pressures are different;

How to assess risk?

- 1. Scale is diferent;
- 2. Objectives are different;
- 3. Pressures are different;

Source-Pathway-Receptor (SPR) model

Source-Pathway-Receptor (SPR) model

Conceptual models

1. Definition:

a conceptual model is a tool for describing and optionally quantifying systems.

A hydrogeological conceptual model describes and quantifies:

- relevant geological characteristics;
- flow conditions (groundwater/surface water interaction);
- hydrogeochemical and hydrobiological processes;
- anthropogenic activities and their interactions.

So What?

Conceptual models are useful in:

Middle Devonian groundwater body in the Gauja/Koiva River basin

Middle Devonian Gauja-Aruküla aquifer (D₂gj-ar) contributes on average 67% of groundwater recharge to the M1 fen polygon.	Quaternary aquifer (Q) contributes on average 33% of groundwater recharge to the M1 fen polygon.
Characteristics:	Characteristics:
•Artesian and anoxic	•Unconfinedoxic
•Stable thermal and isotope signatures	•Unsteady thermal and isotope signatures
•Higher TDS	•Lower TDS
•Longer residence time	•Shorter residence time
•Higher DIC, Ba ²⁺ , Sr ²⁺ , Fe _{tot} ja SiO ₂	•Higher DOC, N _{tot} , P _{tot} , K ⁺ , SO ₄ ⁻² , F ⁺ , Cl ⁺ , Br ⁺ and Al ³⁺

- understanding the significance of pressures;
- design of a monitoring network;
- interpreting monitoring data;
- evaluating the monitoring network;
- establishing threshold values;
- status assessment;
- trend assessment;
- plan of measures;
- stakeholder involvement.

The set-up of a Conceptual Model Why?

Main characteristics:

- 1. Scope and questions to be answered to determine the degree of detail and complexity of the conceptual model;
- 2. Determination of the relevant area;
- Definition of vertical and horizontal structuring units (hydrogeological units);
- 4. Land use distribution.

The set-up of a Conceptual Model What?

Parameterisation/quantification:

- Description and quantification of important hydraulic, geochemical and hydrochemical parameters introduced where possible and necessary;
- Consideration of processes with slow kinetics (e.g. solution processes, unsaturated zone flow, changes in surface conditions, climate variations);
- Description of the most important climatic and unsaturated zone parameters;
- Identification of emerging issues that could pose a potential risk.

The set-up of a Conceptual Model

Recycle!

- 1. Start with simple model;
- 2. Collect data;
- 3. Analyse performance;
- 4. Assess uncertainties;
- 5. Improve the model.

Remember your goals:

Remember your goals:

What is the risk of not meeting the environmental objectives of the WFD?

Remember your goals:

What is the risk of not meeting the environmental objectives of the WFD?

What next?

Remember your goals:

What is the risk of not meeting the environmental objectives of the WFD?

What next?

Risk management, AKA The Plan of Measures:

Where to initiate which measures and what are their effects in time and space.

• A Happy Water Management!

Andres Marandi

andres.Marandi@egt.ee

bit.ly/WaterAct-project

 R^{G}

bit.ly/WaterAct-Researchgate

