

LITHUANIAN ENERGY INSTITUTE

Latvia – Lithuania

ICEREG

Hydrological data modelling in LT pilot rivers on the base of climate change scenarios – results and uncertainties

> Darius Jakimavičius, LEI, hydrodynamic modelling expert MID-TERM WORKSHOP, Kaunas | 29.04.2025

ICEREG

This study **aims** to prepare rare probability of annual maximum discharge (amaxd) projections for the Mūša and Lėvuo rivers according to climate scenarios.

ICEREG

What is the HBV Model?

Conceptual Model

The HBV model is a semidistributed hydrological model to simulate catchment discharge.

Key Components

It represents various hydrological processes, including snowmelt, soil moisture, groundwater, and surface runoff, using simplified equations.

Advantages for Lithuania

The HBV model's adaptability to different climates and simple parameterization can by suitable for Lithuanian conditions.

HBV Model Structure and Processes

Rain and Snow

The model simulates snow accumulation and melt based on temperature and precipitation data.

Evaporation

Some precipitation evaporates and does not contribute to runoff.

Groundwater Response

The model simulates the interaction between soil moisture and groundwater, influencing runoff generation.

The model calculates river runoff based on the combined effects of surface runoff, interflow, and groundwater flow.

Runoff Generation

Model Input Data Requirements

23.000

23.250

23.500

23.750

24.000

24.250

ICEREG

			56.500	23.000	23.250	23.500	23.750	24.000	24.250	24.
Data Type	Description	Source			500					
Catchment Characteristics	Area, elevation, land cover	GIS data, remote sensing	56.250					T	àtula - Treči	onys
Meteorological Data	Precipitation (P) and Temperature (T)	Lithuanian Hydrometeorolo gical Service	56.000			Šiauliai MS	Mū	ša	Lė	evuo -
Hydrological Data	Discharge, Q	Lithuanian Hydrometeorolo gical Service	55.750		Dubysa - Ly	Šušvė V	Ne ⁴ - Šiaulėnai	7ėžis - Pane	/ėžys	Pa
				5000	Y		Inl	53	N	

Calibration and Validation

ICEREG

Calibration Methods

Model parameters are adjusted manually to minimize the difference between simulated and observed river discharge.

1985–1999 for calibration.

Validation Process

The calibrated model is tested using independent data to assess its ability to predict runoff under different conditions.

- 2000-2014 for validation;
- R², RE (%), and visual comparison of simulated and observed Q. •

ICEREG

Input data

Observation

Daily discharge, air temperature and precipitation in the period of 1985–2014.

Climate models

ACCESS-CM2, CNRM-CM6-1, CNRM-ESM2-1; GFDL-ESM4; IITM-ESM; INM-CM4-8; INM-CM5-0; MIROC-ES2L; MIROC6; MPI-ESM1-2-LR; MRI-ESM2-0; NorESM2-MM.

Climate Scenarios Realistic - SSP 245 and pessimistic - SSP 370.

Development of hydrological models

ICEREG

Latvia – Lithuania

Calibration: R² – 0.82, RE – -1.0%. Validation: R² 0.66, RE – -

Calibration: R² – 0.87, RE – -3.2%. Validation: R² 0.77, RE – -15.0%.

Lėvuo River

Projections of Mūša and Lėvuo discharge according to SSP scenarios

Latvia – Lithuania

Interreg

ICEREG

Co-funded by

the European Union

Projected Runoff Changes

The average annual discharge of the Mūša River will decrease:

- by 2% in the near future,
- up to 12% in the mid future,
- up to 24% in the far future.

Slightly different changes have been identified in the Levuo catchment: • In the near future Q will increase by 3%, In the mid and far future, it will decrease up to 6% and 15%, respectively.

ICEREG

Projections of the amaxd according to climate models

	Rank								
	Lėvuo	River	Mūša	Sum					
Distribution	Kolmogorov- Smirnov	Kolmogorov- Smirnov Anderson- Darling Kolmogorov- Smirnov				Anderson- Darling			
Gen. Extreme Value	3	5	6	6	20				
Gen. Gamma (4P)	1	1	2	1	5				
Gen. Logistic	5	6	7	7	25				
Gumbel Max	8	7	8	8	31				
Log-Pearson 3	2	3	4	3	12				
Lognormal (3P)	4	2	3	4	13				
Pearson 5 (3P)	6	4	5	5	20				
Weibull (3P)	7	8	1	2	18				

- Historical discharge observations data (from 1958);
- The best-fitting distribution was selected from the 8 most commonly used distributions;
- It was determined that the amaxd of the Mūša • and Levuo rivers was distributed according to the Gen. Gamma (4P) distribution.

Tendencies of amaxd

ICEREG

Changes of 0.1% probability of amaxd.

Increase in the near future

Mūša River: from 5% (SSP370) to 26% (SSP245). Lėvuo River: from 38% (SSP370) to 68% (SSP245).

Increase or decrease in the mid-future

Mūša River: from -9% (SSP370) to +13% (SSP245). Levuo River: from -8% (SSP245) to -21% (SSP370).

Increase or decrease in the far-future

Mūša River: from +2% (SSP245) to -15% (SSP370). Levuo River: from -2% (SSP370) to -27% (SSP245)

Uncertainties

1

Hydrological model (HBV)

Model development, calibration, validation, input data and etc.

2

Climate models

Apply an ensemble or select several "representative" models. SSP scenarios. Climate models data downscaling methods.

Etc.

3

Is there enough data to select a distribution? Does the selected distribution correspond to the real observation?

Distributions

ICEREG

Conclusion

It is projected that in the future, the average annual discharge of the Mūša and Lėvuo Rivers will decrease up to 24% compared to the reference period;

It was determined that the amaxd of the Mūša and Lėvuo rivers was distributed according to the Gen. Gamma (4P) distribution;

Major positive changes in amaxd (0.1%) are expected in the near future.

Questions ?!?